
By: Adele Wu

Truman Tang, Jesus Correa, Yarkin Gazi

Instructor: Dr. Ilmi Yoon
Spring 2022
CSC 631/831



Wu 1

Table of Contents

01. Abstract
02. Introduction
03. Game Components

a. Characters
i. Art
ii. Rigging
iii. Animation
b. Assets
c. Overworld

i. Scene Development
ii. NPCs
iii. Portals
d. Combat

i. Attacks
1. Players
2. Enemies

ii. HP / Health Points
e. User Interface

i. Screens and Menus
ii. Player Special Attack Cooldown Bar

f. Audio
04. My Contribution
05. Git Commits
06. Challenges and Lessons Learned
07. Second Chance



Wu 2

Abstract

Descend is a cartoony, 2D, Greek mythology-based, semi-open
world, action-adventure game that game focuses on exploration,
real-time combat, and strategy. Players can play as a warrior or
an archer to explore the 2 worlds (overworld and underworld),
meet NPCs, and defeat enemies, all while helping Zeus prevent
Hades from taking over the overworld. The players operate within
a large map, using the arrow keys and WASD keys to meet NPCs to
drive the story and lead the user to combat. In the combat
stages, there are a variety of enemies that try to prevent the
user from reaching the final boss, and a level boss in each
level. Defeating a level boss would open a portal, allowing the
player to exit combat, as well as move on to the next level. In
order to descend into the underworld to fight hades, players
need to defeat the level boss to unlock portals. To successfully
beat the game, the player must be able to dodge enemy attacks
and strategically plan when to use their special attack.

As Descend’s Visual Lead, I am responsible for all things
visual, including designing and creating all of the game’s
characters (playable characters, NPCs, enemies, and bosses).
This involved the process of designing, hand drawing, rigging,
and creating the prefabs for the characters. Additionally, I
handled creating and organizing all the assets (bushes, trees,
volcanos, backgrounds, etc) and animations (every character’s
idle, attack, walk, death, etc) for our world scenes and combat
stages. Furthermore, I took on most of the user interface
components (title, screen, game over screen, congratulations
screen, main menu, lobby menu, pause menu, and player’s special
attack cooldown bar).



Wu 3

Introduction

The entirety of Descend is created from scratch using the
many features within Unity as well as additional tools. Although
the game exists as a single entity, Descend can be broken up
into several components. The visuals, game logic, and audio all
work together to create one cohesive game. This report will
discuss the different components of the game and how the project
is developed, as well as my contributions and thoughts on the
process of creating Descend over the semester.



Wu 4

Game Components: Characters

Art:
All the characters were hand-drawn using Procreate on the

iPad. The process includes each body limb (head, body, arms,
legs, and weapon) being drawn separately as well as in separate
layers. Having each limb separate would allow us to easily move
each body part independently to animate the character with ease
after we piece the body parts together. Utilizing the separate
layers allow for more control of the art. Once the character is
finished being drawn, it is saved as a PNG with a transparent
background, and the file is sent to a computer.

Rigging:
After the character is drawn, the character needs to be

pieced back together through the rigging process. The rigging is
done using the Skinning Editor within Unity’s Sprite Editor. The
rigging process includes adding a digital skeleton and weights
to the character sprite. The combination of the skeleton and
weights is what will allow us to animate the characters. The
skeleton is what allows us to control how to move the character;
however, the sprite will only follow if the weights are added.



Wu 5

Then, for some of the characters, inverse kinematics is used for
the arms and the weapon. Inverse kinematics is a component in
the Unity Library, which makes animating easier and looks more
natural. After the character is finished being rigged, it gets
some basic components, such as a rigid body, added and then
converted into a prefab to be used by the world and combat
teams. The same process is done for every character.

Animation:
After each character is rigged, animations can be created

for each of the characters. Each animation for each character is



Wu 6

created individually, even though many are similar and follow
similar logic. The playable characters have an idle, walking,
and attack animation, while the enemies have an idle, attack,
and death animation. By default, all characters will be in their
idle animations, which constantly loop.

For the playable characters, we have a function that
toggles between the idle and walking animation states. In the
FixedUpdate() method, we constantly check the player’s movement
to determine when to toggle the animation.

// Animation state changer
void ChangeAnimationstate(string newState)
{

// Stop animation from interrupting itself
if (currentAnimState == newState) return;

// Play new animation
animator.Play(newState);

// Update current state
currentAnimState = newState;

}

We have an Attack() function, which will trigger the Attack
parameter that we set to the character’s attack animation in the
animator controller. In the Update() function, we check for when
the player presses on the keys for the normal or special attack,
as we want both attacks to trigger the attack animation, before
calling the Attack() function.

void Attack()
{

animator.SetTrigger("Attack");
Collider2D[] hitEnemies = Physics2D.OverlapCircleAll(attackPoint.position,

attackRange, enemyLayers);
foreach(Collider2D enemy in hitEnemies)
{

enemy.GetComponent<EnemyBehaviour>().TakeHit(attackDamage);
}

}



Wu 7

All the enemies’ attack animations are triggered using a
similar method. However, instead of checking for user input, the
attack is called every some set time, depending on the enemy.
The most complex enemy to develop is Cerberus, as he has 3 sets
of attacks (one for each head), which we handle the same as any
other attack. His idle animation is particularly difficult to
create due to the speed of the tail wag vs the speed of head
movement requiring a change at such drastically different rates.



Wu 8

To trigger the death animation, we track hitpoints. And if the
enemy’s hitpoint reaches 0, the death animation is triggered.



Wu 9

Game Components: Assets

Similar to the characters, the entirety of the game’s
assets, aside from the ground type dirt in world level 1, which
is a tilemap from the asset store, and the ground in combat
stage level 1, which is from a free to use image found online
that we had to clean up using photoshop. Most of the assets,
including all the scenery pieces (bushes, trees, rocks, fences,
volcanos, etc) are hand-drawn using Procreate, the same way that
is used to create the characters. Several pieces are drawn on
the same sheet. After being drawn, they were exported to Unity.
Within the Inspector window for the image, the Sprite Mode
selected would be “Multiple,” which would allow us to slice each
entity automatically using Unity’s Sprite Editor tool.
Oftentimes, we have to clean up slices using Custom Outline.



Wu 10

Some sprites were more complex because they were animated.
To do this, the same piece would be drawn multiple times with
some small differences. Then, the sprites would be sliced and
added to an animation.

The background assets for the combat scenes were created
using vector graphics in order to ensure clarity of these assets
in-game and to accommodate being stretched and manipulated as
needed to fit the scene.



Wu 11

Game Components: Overworld

Scene Development
The flooring of the scenes is created using the tilemap

feature of Unity. Then, the scenery pieces are placed by
dragging sprite assets onto the scene and arranged to our
liking. Collisions are implemented using the Polygon Collider 2D
component, which is attached to all the scenery pieces in the
scene. Then, the NPC characters, which are prefabricated, get
added the same way as the scenery pieces.



Wu 12

NPCs
The story is driven by the NPCs

in the world. The NPCs are prefabs
that contain the rigged character
and a canvas where the dialogue is
displayed. The script includes a
string array for each NPC, which we
have populated with the lines that
we want the character to say.

When the player collides with
an NPC, the script attached to the
NPC triggers a button that the user must click on to initiate
the dialogue, which will display the first string from the
array. To continue the dialogue, the space bar needs to be
pressed, which will trigger the next element to be displayed.
After the last string is displayed, the SceneManager is invoked,
loading the scene that is attached for that NPC. This is how
users are taken to combat stages.

Portals
Portals play a vital role in our game. Portals are used to

transport the player between different world levels and between
combat and world. By default, the portal will not be active. The
portal has a script attached to it that checks if the level boss
has been killed by checking that it is equal to null. If that
condition is met, then the portal’s visibility is enabled. When
a user collides with the portal, a function is called to check
for the current scene. Then, the scene manager is triggered and
loads the next scene that we set.



Wu 13

Game Components: Combat

The combat system is a vital component of the game. Players
enter a different view that only allows x-axis movement,
compared to the world view which can allow characters to move in
the y-direction. In this world, the characters are now able to
use their abilities and attack. There will be a UI for the
enemies' health at the top of the gameplay, as well as a UI
health bar for our characters. When players defeat the boss of
the level, they will transition back into the World Map.



Wu 14

An important component that we have in our game is a
tutorial stage, which aims to teach players how to navigate the
combat stages and how to attack.

Attacks
The game features 2 playable characters, a human warrior,

who has a sword for striking (close range), and a satyr archer,
who has a bow and arrow for shooting (far range). Each character
has 2 attacks - a normal attack and a super attack.

Player attacks are triggered by user input. If the user
presses the spacebar, that will trigger the character’s normal
attack. As part of the prefab, the characters have an “attack
point” object attached. For the warrior, it is located at the
end of the sword. If the attack point collides with an enemy,
that invokes the TakeHit function on the enemy. For the archer’s
normal attack, the archer has a script component called “Archer
Basic,” which will instantiate an arrow, which is a prefab that
we have, from the attack point. The arrow will travel in one
direction on the horizontal axis until it collides with an enemy
or until it hits the ground, as it is bound to gravity.



Wu 15

Both the warrior and archer’s special attacks are created
similar to the archer’s normal attack of instantiating a prefab
from the character’s attack point, which will travel in one
direction on the horizontal axis until it collides with an
enemy, as it holds no gravity. The difference is that these
special attack prefabs hold a higher number for attack damage.
Additionally, there is a cooldown set in place in order to
balance the character’s strength and ability. The special attack
can only be invoked once every 10 seconds. Both the normal and
special attacks trigger the attack animation. If the “x” key is
pressed, that will try to trigger the character’s special
attack. If the user attempts to use the special attack before
the cooldown, we simply trigger the character’s normal attack.



Wu 16

On the UI, there is a bar to indicate to the player when
they are able to use their special attack. During the entire
time of the charge up, the fill of the bar will be pink. When
the special attack is ready, i.e. when the 10 seconds cooldown
is over, the bar turns blue, as an indication to the player that
they are now allowed to use their special attack.

Enemies only have a normal attack, which is triggered every
some preset time. This interval is different for each enemy.
Enemies that are considered grunts possess familiar attack
styles. The cyclops and minotaur’s attack is similar to that of
the warrior’s normal attack. When a user is colliding with an
enemy, the enemy’s attack is invoked, and the enemy will strike
again the cooldown is over. Meanwhile, the harpy’s attack is
similar to that of the player’s special attacks, as it
instantiates prefabs that travel horizontally until a player is
hit. The harpy does not require collision between the character
but instead has a detector. A detector is a separate game object
that is attached to the character. It is located before the
character. The detector contains a script component that checks
that a character has collided with it. If a player is colliding
with the detector, the enemy’s attack will be invoked.



Wu 17

Like the harpy, Apollo’s attack also instantiates prefabs
that travel horizontally to hit a player. The difference with
Apollo is that Apollo bears two attack points that are
vertically stacked - one at the player’s standing height and the
other at the character’s jump height from the stage’s ground.
Both attack points invoke an attack at different speed rates,
resulting in a unique pattern for Apollo’s attack.



Wu 18

Cerberus’s attack is also similar. However, Cerberus has
three attack points, one for each of his heads. The additional
attack point allows for an even more complex pattern of attack.

Amongst all the enemies in the game, the character that
holds the most unique attack is Hades, who unleashes fireballs
from the sky. The implementation is similar to the previous
characters’ attacks that involve shooting a prefab of some sort.
However, Hades has 16 attack points that are located across the
top of the scene within Hades’ detector, and the prefabs of his
attacks travel vertically.



Wu 19

HP / Health Points
Health points reset at every stage. Each character has a

unique number which is their amount of health points. In combat,
all players and enemies have a hp bar attached to the prefab of
the character, in which the visibility is toggled on upon being
attacked. As previously stated, each attack is attributed with a
number referred to as “attack damage.” As a result of being
collided with an attack, the TakeHit() function of the character
is called, reducing the hp of the character equal to the number
of “attack damage” from the attack. At the character’s max hp,
the hp bar will be green, then gradually becomes red as their hp
number decreases. When a character’s hp reached 0, the game
object is destroyed. For enemies, the death animation is
invoked. Whereas for the player, the “Game Over” scene will be
loaded.



Wu 20

Game Components: User Interface

Screens and Menus
The game begins with the title screen, which consists of

two panels on a canvas and a moving background. The first panel
contains the title of the game and a “play” button. Selecting
the play button will invoke a script that will activate the next
panel and deactivate the current panel, which are both manually
set. The following panel allows the user to indicate whether
they want to play by themselves or with someone.

Selecting “solo” will call the
scene manager to load the game’s
World: Level One. Selecting
“Multiplayer” will load up a
Lobby Screen, which allows the
players to pair up.

The pause menu is a panel made
into a prefab that is added to
every game scene. By default, it
is not active. When a player
hits the esc key, the pause menu
will be set active on the
current scene, and the game’s
timescale will be set to 0f.
Clicking on the continue button
or hitting the esc key again will resume the game by
deactivating the panel and setting the game’s timescale to 1f.



Wu 21

The Game Over screen will be loaded if the user dies, which is
the game’s losing condition. The Congrats scene will be loaded
if the player defeats Hades, which is the game’s winning
condition. Both scenes consist of the option to play again,
which loads the title screen. The player’s current progress in
the world is stored. This means that if the player defeats the
level one boss, the portal that is active on world level one
will remain active; the player does not have to fight the level
one boss again to activate the portal.



Wu 22

Game Components: Audio

All of the game’s audio (music, ambiance, sound effects,
etc.) are produced by the audio team. The audio clips are loaded
into an audio bank, which gets integrated with Unity through the
FMOD tool. To add music to a scene, the components FMOD Studio
Listener, FMOD Studio Bank Loader, and FMOD Studio Event Emitter
are added to the camera. Selecting the camera as the source of
music allows the music to be consistent everywhere throughout
the scene.

Most sound effects are dependent on game logic, and so,
they are integrated within scripts. To invoke a sound effect,
simply use the PlayOneShot() function of FMODUnity and insert
the location of the desired audio file from the FMOD audio bank.
For example, the following code is used to prompt the audio for
the warrior’s super attack. This line of code is embedded into
game logic to determine when the warrior’s super attack is used.

FMODUnity.RuntimeManager.PlayOneShot(
"event:/SFX/Player/Big_Slash",
GetComponent<Transform>().position

);



Wu 23

My Contribution

As prior mentioned, I am the team’s Visual Leading, making
me responsible for all of the game’s assets, animations, and UI
components, as well as providing assistance wherever needed. I
created the characters used in the game by hand drawing,
rigging, and creating animations for all the characters. Details
for the process can be found under “Game Components:
Characters.” Additionally, I also hand drew almost all of the
game’s assets, sliced them, and created animations for them as
necessary. Details for the process can be found under “Game
Components: Assets.” Furthermore, I created many of the game’s
UI components, such as all the menus and the player special
attack cooldown bar. Details for the process can be found under
“Game Components: User Interface” and “Game Components: Combat”
respectively. In creating the menus, I also created the flow of
the game as I wired the scenes and panels.

Git Commits



Wu 24



Wu 25



Wu 26



Wu 27



Wu 28



Wu 29



Wu 30

Challenges and Lessons Learned

The greatest challenge of working on this project, for both
my team and me, is using Git. We would always get merge
conflicts in addition to other errors whenever we pull, push, or
merge. It was a process, but by the end of the semester, we were
able to figure out the best solution to these errors. We
initially tried to add some of these files to the gitignore
page; however, that did not fix the problem. For a while, the
git stash command was able to get us by. Then, upon approaching
the TA, we were advised to simply delete the conflicting files
before we pull. That came to be tedious and was not always
effective. Our go-to method now is to simply add and commit
those files. Through the process of dealing with endless git
conflicts and errors, we better understand the different files
that Unity creates and modifies.

A lesson that I learned is to not be over-optimistic. My
team initially wanted to create 5 levels and 3 stages within
each level, making 15 combat stages in total. We even devised a
plan and set milestones that allowed us to believe it was a
possible task. Upon every member having to spend an unexpected
amount of time to create the first level and stages, we learned
that it was not possible for us to create 5 levels and 15 stages
that would be decent given the short amount of time, that is a
single semester. As a result, we decided on quality over
quantity, and we scaled down so that we would be able to create
components that we would be proud of. This meant that some work
and plans had to be scrapped entirely. However, I believe that
this was the right decision.



Wu 31

Second Chance

If given a second chance to develop this game from scratch,
I would like to set up a more rigid working structure. I believe
communication and ensuring that everyone is aware of the
project’s current state and trajectory is extremely important.

My team did not have consistent meetings; we simply
arranged meetings whenever we feel that a meeting is needed. For
the most part, that was fine for the majority of the team, as we
were able to hold ourselves accountable for our tasks, even
without the consistent meetings. However, I acknowledge that not
everyone is like that, and I think having more consistent
meetings would keep everyone on their toes and engaged with the
project/team.

Additionally, I believe another method to ensure that all
members are aware of their tasks is to have a place for the team
to display each member’s responsibilities and expected due
dates, along with the progress of each task. This could be as
simple as setting up a Discord channel that contains messages
about each member’s tasks and their respective due date.
Additionally, the member could react or respond with a message
to indicate that the task is completed as well as maintain an
organized history of the project’s progress. An alternative is
using a resource like Trello to assign and track each member’s
tasks. Some of our members already inform the rest of the team
of when they have pushed into the main branch and describe the
changes that they have made. However, not everyone does this, so
not everyone is always aware of the state of the project. To
add, sometimes our general channel gets flooded with messages,
so people would miss the message on project updates.


